Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\operatorname{Bis}\left(\mu-4-n i t r o p h e n o l a t o-\kappa^{2} O: O^{\prime}\right)$ bis $\left[\left(2,2^{\prime}-\right.\right.$ bipyridine- $\kappa^{2} N, N^{\prime}$)nitratolead(II)]

Hong-Ping Xiao, ${ }^{\text {a }}$ * Nan-Wen

 Zhu ${ }^{\text {b }}$ and Mao-Lin Hu ${ }^{\text {a }}$${ }^{\text {a }}$ Department of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China, and
${ }^{\mathbf{b}}$ School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

Correspondence e-mail: hp_xiao@wznc.zj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.024$
$w R$ factor $=0.052$
Data-to-parameter ratio $=12.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\left[\mathrm{Pb}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$, each $\mathrm{Pb}^{\mathrm{II}}$ ion is surrounded by two N atoms from a $2,2^{\prime}$ bipyridine ligand, two O atoms from two bridging p-nitrophenolate anions and one O atom from a nitrate anion, so forming a centrosymmetric dimeric complex.

Comment

Among the many metal- p-nitrophenolate complexes that exist, the p-nitrophenolate anion usually coordinates in a monodenate fashion or exists as a free p-nitrophenolate anion to balance charges (Brahadeeswaran et al., 2002; Camus et al., 2003; Davies et al., 2000; Facchinetti et al., 2001). The title complex, $\left[\mathrm{Pb}_{2}(\text { bipy })_{2}(\mathrm{pnp})_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$, (I) (where bipy is $2,2^{\prime}$ bipyridine and pnp is p-nitrophenolate), was obtained by hydrothermal synthesis, and the coordination mode of the p-nitrophenolate anion is very different from that observed in the above reported complexes.

(1)

In (I), each $\mathrm{Pb}^{\mathrm{II}}$ cation has a five-coordinate environment, completed by two N atoms from a $2,2^{\prime}$-bipyridine ligand, two O atoms from two bridging p-nitrophenolate anions and one O atom from a nitrate anion (Fig. 1). Selected bond distances and angles are given in Table 1. The $\mathrm{Pb} 1-\mathrm{O} 4$ bond is longer than the bridging $\mathrm{Pb} 1-\mathrm{O} 1$ and $\mathrm{Pb} 1-\mathrm{O}_{1}{ }^{\mathrm{i}}$ [symmetry code: (i) $2-x, 2-y,-z]$ bonds. The p-nitrophenolate anion acts as a bridge between two Pb atoms and forms a dimeric complex. The $\mathrm{Pb} 1 \cdots \mathrm{~Pb} 1^{\mathrm{i}}$ distance is 4.097 (3) \AA and the complex possesses a centre of symmetry midway between the two Pb atoms.

In the crystal structure, a two-dimensional network is formed by $\pi-\pi$ interactions between the $2,2^{\prime}$-bipyridine heterocycles, with a separation of $c a 3.62 \AA$, and between the benzene rings of p-nitrophenolates belonging to adjacent dimeric units, with a separation of ca $3.55 \AA$.

Received 10 May 2004 Accepted 11 May 2004 Online 22 May 2004

Experimental

The title complex was synthesized by the hydrothermal method from p-nitrophenol $(0.5 \mathrm{mmol}), \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \quad(0.5 \mathrm{mmol}), 2,2^{\prime}$-bipyridine $(1 \mathrm{mmol})$ and water $(10.0 \mathrm{ml})$, in a 30.0 ml Telfon-lined stainless steel reactor. The solution was heated at 403 K for 3 d . The reaction system was then cooled slowly to room temperature, and yellow crystals were collected.

Crystal data

$\left[\mathrm{Pb}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$	$Z=1$
$M_{r}=1126.97$	$D_{x}=2.208 \mathrm{Mg} \mathrm{m}^{-3}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=8.646(5) \AA$	Cell parameters from 4967
$b=10.5079(6) \AA$	reflections
$c=10.7934(6) \AA$	$\theta=2.7-25.2^{\circ}$
$\alpha=91.477(1)^{\circ}$	$\mu=10.00 \mathrm{~mm}^{-1}$
$\beta=111.107(1)^{\circ}$	$T=293(2) \mathrm{K}$
$\gamma=109.929(1)^{\circ}$	Block, yellow
$V=847.6(5) \AA^{\circ}$	$0.31 \times 0.27 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: by
integration (SHELXTL;
Bruker, 2000)
$T_{\text {min }}=0.061, T_{\text {max }}=0.210$
6259 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.052$
$S=1.11$
3047 reflections
244 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0213 P)^{2}\right. \\
& \quad+0.5091 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.78 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.96 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\mathrm{A}^{\circ},^{\circ}\right)$.

$\mathrm{Pb} 1-\mathrm{O} 1$	$2.333(3)$	$\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.590(3)$
$\mathrm{Pb} 1-\mathrm{N} 3$	$2.526(4)$	$\mathrm{Pb} 1-\mathrm{O} 4$	$2.692(4)$
$\mathrm{Pb} 1-\mathrm{N} 2$	$2.554(4)$		
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 3$	$78.42(12)$	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	$142.17(11)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{N} 2$	$84.12(11)$	$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 4$	$77.28(13)$
$\mathrm{N} 3-\mathrm{Pb} 1-\mathrm{N} 2$	$64.26(12)$	$\mathrm{N} 3-\mathrm{Pb} 1-\mathrm{O} 4$	$137.30(12)$
$\mathrm{O} 1-\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	$67.41(12)$	$\mathrm{N} 2-\mathrm{Pb} 1-\mathrm{O} 4$	$78.73(12)$
$\mathrm{N} 3-\mathrm{Pb} 1-\mathrm{O} 1^{\mathrm{i}}$	$85.27(11)$	$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Pb} 1-\mathrm{O} 4$	$116.19(12)$

Symmetry code: (i) $2-x, 2-y,-z$.
All H atoms were included in the refinement in calculated positions in the riding model approximation $[\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97.

Figure 1
The molecular structure of (I), with the atom-numbering scheme, showing displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.

Figure 2
A view down the a axis of the two-dimensional network structure of (I) formed by $\pi-\pi$ interactions.

The authors thank the Zhejiang Provincial Natural Science Foundation of China (No. 202137) for support.

References

Brahadeeswaran, S., Bhat, H. L., Sherwood, J. N. \& Vrcelj, R. M. (2002). Acta Cryst. E58, m290-m292.
Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a) and SHELXTL (Version 5.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Camus, A., Facchinetti, A., Marsich, N., Lanfredi, A. M. M., Massera, C. \& Ugozzoli, F. (2003). Inorg. Chim. Acta, 349, 128-134.
Davies, P. J., Lincoln, S. F., Smith, C. B., Taylor, M. R., Wainwright, K. P. \& Wallwork, K. S. (2000). Acta Cryst. C56, 28-30.
Facchinetti, A., Marsich, N., Camus, A., Ugozzoli, F., Massera, C. \& Lanfredi, A. M. M. (2001). Inorg. Chim. Acta, 324, 162-172.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

